This was from a random website I found on practising good programming
techniques and I thought I'd see what ways people could find to write
out this example. Below are my two examples (which should work...).
I am merely interested in other techniques people have (without
resorting to overusage of C modules and such like), just python and
good computer science techniques.
For the wordlist go to this link <a href="
http://codekata.pragprog.com/
2007/01/kata_six_anagra.html">Kata Anagrams</a>
Anyway here are my two examples.
This one uses a dictionary to store prime values of each letter in the
alphabet and for each line multiple the results of the characters
(which is unique for each anagram) and add them to a dictionary for
printing latter.
<pre>
def anagram_finder():
primeAlpha = {'a':2, 'b':3, 'c':5, 'd':7,'e' : 11, 'f':13, 'g':17,
'h':19, \
'i':23, 'j':29, 'k':31, 'l':37, 'm':41, 'n':43, 'o':
47, 'p':53, \
'q':59, 'r':61, 's':67, 't':71, 'u':73, 'v':79, 'w':
83, 'x':89, \
'y':97, 'z':101}
dictAna = {}
file = open ("wordlist.txt", "r")
for line in file:
value = 1
for s in line:
if s.lower() in primeAlpha:
value *= primeAlpha[s.lower()]
dictAna.setdefault(value, []).append(line.strip())
file.close()
print "\n".join(['Anagrams are: %s' % (v) for k, v in
dictAna.items() if len(dictAna[k]) > 1])
</pre>
My second is a little bit simpler. Each dictionary key is an
alphabetical ordering of the line in question, so that anagrams will
appear the same. It will add to the dictionary the new word either in
an existing key, or create a new one for it.
<pre>
def anagram_finder():
dict = {}
file = ('wordlist.txt', 'r')
for line in file:
strip_line = line.strip().lower()
sort_line = str(sorted(strip_line))
dict.setdefault(sort_line, []).append(strip_line)
file.close()
print '\n'.join(['Anagrams are: %s' % (v) for k, v in dict.items()
if len(dict[k]) > 1])
</pre>
Comparing them with timeit, they both took around 1 second or so, with
the first being slightly faster.
What other ways do people think will work (and do mine actually work
for other people!)
## I took a somewhat different approach. Instead of in a file,
## I've got my word list (562456 words) in an MS-Access database.
## And instead of calculating the signature on the fly, I did it
## once and added the signature as a second field:
##
## TABLE CONS_alpha_only_signature_unique
## --------------------------------------
## CONS text 75
## signature text 26
##
## The signature is a 26 character string where each character is
## the count of occurences of the matching letter. Luckily, in
## only a single case was there more than 9 occurences of any
## given letter, which turned not to be a word but a series of
## words concatenated so I just deleted it from the database
## (lots of crap in the original word list I used).
##
## Example:
##
## CONS signature
## aah 20000001000000000000000000 # 'a' occurs twice & 'h' once
## aahed 20011001000000000000000000
## aahing 20000011100001000000000000
## aahs 20000001000000000010000000
## aaii 20000000200000000000000000
## aaker 20001000001000000100000000
## aal 20000000000100000000000000
## aalborg 21000010000100100100000000
## aalesund
20011000000101000010100000
##
## Any words with identical signatures must be anagrams.
##
## Once this was been set up, I wrote a whole bunch of queries
## to use this table. I use the normal Access drag and drop
## design, but the SQL can be extracted from each, so I can
## simply open the query from Python or I can grab the SQL
## and build it inside the program. The query
##
## signatures_anagrams_select_signature
##
## is hard coded for criteria 9 & 10 and should be cast inside
## Python so the criteria can be changed dynamically.
##
##
## QUERY signatures_anagrams_longest
## ---------------------------------
## SELECT Len([CONS]) AS Expr1,
## Count(Cons_alpha_only_signature_unique.CONS) AS
CountOfCONS,
## Cons_alpha_only_signature_unique.signature
## FROM Cons_alpha_only_signature_unique
## GROUP BY Len([CONS]),
## Cons_alpha_only_signature_unique.signature
## HAVING (((Count(Cons_alpha_only_signature_unique.CONS))>1))
## ORDER BY Len([CONS]) DESC ,
## Count(Cons_alpha_only_signature_unique.CONS) DESC;
##
## This is why I don't use SQLite3, must have crosstab queries.
##
## QUERY signatures_anagram_summary
## --------------------------------
## TRANSFORM Count(signatures_anagrams_longest.signature) AS
CountOfsignature
## SELECT signatures_anagrams_longest.Expr1 AS [length of word]
## FROM signatures_anagrams_longest
## GROUP BY signatures_anagrams_longest.Expr1
## PIVOT signatures_anagrams_longest.CountOfCONS;
##
##
## QUERY signatures_anagrams_select_signature
## ------------------------------------------
## SELECT Len([CONS]) AS Expr1,
## Count(Cons_alpha_only_signature_unique.CONS) AS
CountOfCONS,
## Cons_alpha_only_signature_unique.signature
## FROM Cons_alpha_only_signature_unique
## GROUP BY Len([CONS]),
## Cons_alpha_only_signature_unique.signature
## HAVING (((Len([CONS]))=9) AND
## ((Count(Cons_alpha_only_signature_unique.CONS))=10))
## ORDER BY Len([CONS]) DESC ,
## Count(Cons_alpha_only_signature_unique.CONS) DESC;
##
## QUERY signatures_lookup_by_anagram_select_signature
## ---------------------------------------------------
## SELECT signatures_anagrams_select_signature.Expr1,
## signatures_anagrams_select_signature.CountOfCONS,
## Cons_alpha_only_signature_unique.CONS,
## Cons_alpha_only_signature_unique.signature
## FROM signatures_anagrams_select_signature
## INNER JOIN Cons_alpha_only_signature_unique
## ON signatures_anagrams_select_signature.signature
## = Cons_alpha_only_signature_unique.signature;
##
##
## Now it's a simple matter to use the ODBC from Win32 to extract
## the query output into Python.
import dbi
import odbc
con = odbc.odbc("words")
cursor = con.cursor()
## This first section grabs the anagram summary. Note that
## queries act just like tables (as long as they don't have
## internal dependencies). I read somewhere you can get the
## field names, but here I put them in by hand.
##cursor.execute("SELECT * FROM signature_anagram_summary")
##
##results = cursor.fetchall()
##
##for i in results:
## for j in i:
## print '%4s' % (str(j)),
## print
## (if this wraps, each line is 116 characters)
## 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 23
## 2 259 None None None None None None None None None None None
None None None None None None
## 3 487 348 218 150 102 None None None None None None None
None None None None None None
## 4 1343 718 398 236 142 101 51 26 25 9 8 3
2 None None None None None
## 5 3182 1424 777 419 274 163 106 83 53 23 20 10
6 4 5 1 3 1
## 6 5887 2314 1051 545 302 170 114 54 43 21 15 6
5 4 4 2 None None
## 7 7321 2251 886 390 151 76 49 37 14 7 5 1
1 1 None None None None
## 8 6993 1505 452 166 47 23 8 6 4 2 2 None
None None None None None None
## 9 5127 830 197 47 17 6 None None 1 None None None
None None None None None None
## 10 2975 328 66 8 2 None None None None None None None
None None None None None None
## 11 1579 100 5 4 2 None None None None None None None
None None None None None None
## 12 781 39 2 1 None None None None None None None None
None None None None None None
## 13 326 11 2 None None None None None None None None None
None None None None None None
## 14 166 2 None None None None None None None None None None
None None None None None None
## 15 91 None 1 None None None None None None None None None
None None None None None None
## 16 60 None None None None None None None None None None None
None None None None None None
## 17 35 None None None None None None None None None None None
None None None None None None
## 18 24 None None None None None None None None None None None
None None None None None None
## 19 11 None None None None None None None None None None None
None None None None None None
## 20 6 None None None None None None None None None None None
None None None None None None
## 21 6 None None None None None None None None None None None
None None None None None None
## 22 4 None None None None None None None None None None None
None None None None None None
## From the query we have the word size as row header and size of
## anagram set as column header. The data value is the count of
## how many different anagram sets match the row/column header.
##
## For example, there are 7321 different 7-letter signatures that
## have 2 anagram sets. There is 1 5-letter signature having a
## 23 member anagram set.
##
## We can then pick any of these, say the single 10 member anagram
## set of 9-letter words, and query out out the anagrams:
cursor.execute("SELECT * FROM
signatures_lookup_by_anagram_select_signature")
results = cursor.fetchall()
for i in results:
for j in i:
print j,
print
## 9 10 anoretics 10101000100001100111000000
## 9 10 atroscine 10101000100001100111000000
## 9 10 certosina 10101000100001100111000000
## 9 10 creations 10101000100001100111000000
## 9 10 narcotise 10101000100001100111000000
## 9 10 ostracine 10101000100001100111000000
## 9 10 reactions 10101000100001100111000000
## 9 10 secration 10101000100001100111000000
## 9 10 tinoceras 10101000100001100111000000
## 9 10 tricosane 10101000100001100111000000
## Nifty, eh?