Any elegant way to construct the complete $k$-partite graph inPython?

P

Paul Miller

I was wondering if there were any neat tools (like for instance,
something from itertools) that would help me write the following function
more elegantly. The return value should, of course, be the complete $k$-
partite graph $K_{n_1, n_2, \dots, n_k}$:

def completeGraph (*ns):
'''
Returns the complete graph $K_{n_1, n_2, \dots, n_k}$ when passed
the sequence \code {n_1, n_2, \dots, n_k}.
'''
if len (ns) == 1:
return completeGraph ( * ([1] * ns[0]) )
n = sum (ns)
vertices = range (n)
partition_indices = [sum (ns[:i]) for i in range (len (ns))]
partite_sets = [vertices[partition_indices:partition_indices[i+1]]
\
for i in range (len (partition_indices) - 1)]
partite_sets.append (vertices[partition_indices [-1]:] )

edges = []
for i in range (len (partite_sets)):
for j in range (i + 1, len (partite_sets)):
edges.extend ([ (u, v) for u in partite_sets for v in \
partite_sets [j] ])

return graph.Graph (vertices = vertices, edges = edges)

Many thanks!
 
G

geremy condra

I was wondering if there were any neat tools (like for instance,
something from itertools) that would help me write the following function
more elegantly.  The return value should, of course, be the complete $k$-
partite graph $K_{n_1, n_2, \dots, n_k}$:

def completeGraph (*ns):
   '''
   Returns the complete graph $K_{n_1, n_2, \dots, n_k}$ when passed
   the sequence \code {n_1, n_2, \dots, n_k}.
   '''
   if len (ns) == 1:
       return completeGraph ( * ([1] * ns[0]) )
   n = sum (ns)
   vertices = range (n)
   partition_indices = [sum (ns[:i]) for i in range (len (ns))]
   partite_sets = [vertices[partition_indices:partition_indices[i+1]]
\
                   for i in range (len (partition_indices) - 1)]
   partite_sets.append (vertices[partition_indices [-1]:] )

   edges = []
   for i in range (len (partite_sets)):
       for j in range (i + 1, len (partite_sets)):
           edges.extend ([ (u, v) for u in partite_sets for v in \
                          partite_sets [j] ])

   return graph.Graph (vertices = vertices, edges = edges)

Many thanks!


Graphine does this with the following:

from base import Graph

def K(n):
"""Generates a completely connected undirected graph of size n.

The verticies are numbered [0, n).

The edges are named after the verticies they connect such that
an edge connected verticies 1 and 2 is named (1,2).
"""
# create the graph
k = Graph()
# generate all the nodes
for i in range(n):
k.add_node(i)
# generate all the edges
for i in range(n):
for j in range(i+1, n):
k.add_edge(i, j, (i,j), is_directed=False)
# return the graph
return k


Disclaimer: I'm the author of graphine.

Geremy Condra
 
G

geremy condra

I was wondering if there were any neat tools (like for instance,
something from itertools) that would help me write the following function
more elegantly.  The return value should, of course, be the complete $k$-
partite graph $K_{n_1, n_2, \dots, n_k}$:

def completeGraph (*ns):
   '''
   Returns the complete graph $K_{n_1, n_2, \dots, n_k}$ when passed
   the sequence \code {n_1, n_2, \dots, n_k}.
   '''
   if len (ns) == 1:
       return completeGraph ( * ([1] * ns[0]) )
   n = sum (ns)
   vertices = range (n)
   partition_indices = [sum (ns[:i]) for i in range (len (ns))]
   partite_sets = [vertices[partition_indices:partition_indices[i+1]]
\
                   for i in range (len (partition_indices) - 1)]
   partite_sets.append (vertices[partition_indices [-1]:] )

   edges = []
   for i in range (len (partite_sets)):
       for j in range (i + 1, len (partite_sets)):
           edges.extend ([ (u, v) for u in partite_sets for v in \
                          partite_sets [j] ])

   return graph.Graph (vertices = vertices, edges = edges)

Many thanks!


Graphine does this with the following:

from base import Graph

def K(n):
       """Generates a completely connected undirected graph of size n.

       The verticies are numbered [0, n).

       The edges are named after the verticies they connect such that
       an edge connected verticies 1 and 2 is named (1,2).
       """
       # create the graph
       k = Graph()
       # generate all the nodes
       for i in range(n):
               k.add_node(i)
       # generate all the edges
       for i in range(n):
               for j in range(i+1, n):
                       k.add_edge(i, j, (i,j), is_directed=False)
       # return the graph
       return k


Disclaimer: I'm the author of graphine.

Geremy Condra


Sorry, misread- to generate a k-partite graph, you'll need a bit
more legwork. Give me a bit and I'll add it to graphine.

Geremy Condra
 
G

geremy condra

I was wondering if there were any neat tools (like for instance,
something from itertools) that would help me write the following function
more elegantly.  The return value should, of course, be the complete $k$-
partite graph $K_{n_1, n_2, \dots, n_k}$:

def completeGraph (*ns):
   '''
   Returns the complete graph $K_{n_1, n_2, \dots, n_k}$ when passed
   the sequence \code {n_1, n_2, \dots, n_k}.
   '''
   if len (ns) == 1:
       return completeGraph ( * ([1] * ns[0]) )
   n = sum (ns)
   vertices = range (n)
   partition_indices = [sum (ns[:i]) for i in range (len (ns))]
   partite_sets = [vertices[partition_indices:partition_indices[i+1]]
\
                   for i in range (len (partition_indices) - 1)]
   partite_sets.append (vertices[partition_indices [-1]:] )

   edges = []
   for i in range (len (partite_sets)):
       for j in range (i + 1, len (partite_sets)):
           edges.extend ([ (u, v) for u in partite_sets for v in \
                          partite_sets [j] ])

   return graph.Graph (vertices = vertices, edges = edges)

Many thanks!


Graphine does this with the following:

from base import Graph

def K(n):
       """Generates a completely connected undirected graph of size n.

       The verticies are numbered [0, n).

       The edges are named after the verticies they connect such that
       an edge connected verticies 1 and 2 is named (1,2).
       """
       # create the graph
       k = Graph()
       # generate all the nodes
       for i in range(n):
               k.add_node(i)
       # generate all the edges
       for i in range(n):
               for j in range(i+1, n):
                       k.add_edge(i, j, (i,j), is_directed=False)
       # return the graph
       return k


Disclaimer: I'm the author of graphine.

Geremy Condra


Alright, how does this look:

def k_partite(*partition_sizes):
g = Graph()
for pos, num_nodes in enumerate(partition_sizes):
for i in range(num_nodes):
n = g.add_node(name=(pos,i), partition=pos)
for node1 in g.nodes:
for node2 in g.nodes:
if node1.partition != node2.partition:
g.add_edge(node1, node2, is_directed=False)
return g

Geremy Condra
 
R

Richard Thomas

On Mon, Nov 23, 2009 at 7:05 PM, Paul Miller
I was wondering if there were any neat tools (like for instance,
something from itertools) that would help me write the following function
more elegantly.  The return value should, of course, be the complete $k$-
partite graph $K_{n_1, n_2, \dots, n_k}$:
def completeGraph (*ns):
   '''
   Returns the complete graph $K_{n_1, n_2, \dots, n_k}$ when passed
   the sequence \code {n_1, n_2, \dots, n_k}.
   '''
   if len (ns) == 1:
       return completeGraph ( * ([1] * ns[0]) )
   n = sum (ns)
   vertices = range (n)
   partition_indices = [sum (ns[:i]) for i in range (len (ns))]
   partite_sets = [vertices[partition_indices:partition_indices[i+1]]
\
                   for i in range (len (partition_indices) - 1)]
   partite_sets.append (vertices[partition_indices [-1]:] )
   edges = []
   for i in range (len (partite_sets)):
       for j in range (i + 1, len (partite_sets)):
           edges.extend ([ (u, v) for u in partite_sets for v in \
                          partite_sets [j] ])
   return graph.Graph (vertices = vertices, edges = edges)
Many thanks!
Graphine does this with the following:
from base import Graph
def K(n):
       """Generates a completely connected undirected graph of size n.
       The verticies are numbered [0, n).
       The edges are named after the verticies they connect such that
       an edge connected verticies 1 and 2 is named (1,2).
       """
       # create the graph
       k = Graph()
       # generate all the nodes
       for i in range(n):
               k.add_node(i)
       # generate all the edges
       for i in range(n):
               for j in range(i+1, n):
                       k.add_edge(i, j, (i,j), is_directed=False)
       # return the graph
       return k
Disclaimer: I'm the author of graphine.
Geremy Condra


Alright, how does this look:

def k_partite(*partition_sizes):
        g = Graph()
        for pos, num_nodes in enumerate(partition_sizes):
                for i in range(num_nodes):
                        n = g.add_node(name=(pos,i), partition=pos)
        for node1 in g.nodes:
                for node2 in g.nodes:
                        if node1.partition != node2.partition:
                                g.add_edge(node1, node2, is_directed=False)
        return g

Geremy Condra


Not sure exactly how you're representing graphs, this seems like the
simplest way of listing the edges.

def complete_partite(*sizes):
total = sum(sizes)
nodes, edges = range(total), []
for group in xrange(len(sizes)):
low = sum(sizes[:group-1])
high = sum(sizes[:group])
edges.extend((i, j) for i in xrange(low, high)
for j in xrange(high, total))
return nodes, edges

Chard
 
P

Paul Miller

Not sure exactly how you're representing graphs, this seems like the
simplest way of listing the edges.

def complete_partite(*sizes):
total = sum(sizes)
nodes, edges = range(total), []
for group in xrange(len(sizes)):
low = sum(sizes[:group-1])
high = sum(sizes[:group])
edges.extend((i, j) for i in xrange(low, high)
for j in xrange(high, total))
return nodes, edges

Thanks! I think this is what I was looking for (unless the collective
wisdom of c.l.py can come up with something *even more* elegant). :)
 
M

Malte Helmert

Paul said:
Not sure exactly how you're representing graphs, this seems like the
simplest way of listing the edges.

def complete_partite(*sizes):
total = sum(sizes)
nodes, edges = range(total), []
for group in xrange(len(sizes)):
low = sum(sizes[:group-1])
high = sum(sizes[:group])

I think this has a conceptual off-by-one error. Add

print group, low, high

to see what I mean (especially the first iteration). It still works, but
I think this would be clearer:

low = sum(sizes[:group])
high = sum(sizes[:group + 1])

or to avoid doing essentially the same summation twice:

low = sum(sizes[:group])
high = low + sizes[group]

Here's a variant that uses a running total instead of recomputing the
sum in every iteration, thus getting rid of xrange(len(...)).

def complete_partite(*sizes):
total = sum(sizes)
nodes, edges = range(total), []
curr_total = 0
for size in sizes:
edges.extend((i, j) for i in xrange(curr_total, curr_total+size)
for j in xrange(curr_total+size, total))
curr_total += size
return nodes, edges

Finally, here is a variant that is a bit shorter because it produces the
edges in a different way and hence gets rid of the need for knowing the
total up front and uses total as running total instead. It has the
drawback of not generating the edges in ascending order though, so I
think the previous one is nicer:

def complete_partite(*sizes):
total, edges = 0, []
for size in sizes:
edges.extend((i, j) for i in xrange(total)
for j in xrange(total, total + size))
total += size
return range(total), edges

Finally, here's a variation on the same theme:

def complete_partite(*sizes):
nodes, edges = [], []
for size in sizes:
partition = xrange(len(nodes), len(nodes) + size)
edges.extend((i, j) for i in nodes for j in partition)
nodes.extend(partition)
return nodes, edges

Malte
 

Ask a Question

Want to reply to this thread or ask your own question?

You'll need to choose a username for the site, which only take a couple of moments. After that, you can post your question and our members will help you out.

Ask a Question

Members online

Forum statistics

Threads
473,968
Messages
2,570,149
Members
46,695
Latest member
StanleyDri

Latest Threads

Top