Automatic function result type adaption depending on arg?

  • Thread starter Alf P. Steinbach
  • Start date
A

Alf P. Steinbach

I have e.g.

template< typename T >
inline typename T::iterator startOf( T& c )
{
return c.begin();
}

template< typename T >
inline typename T::const_iterator startOf( T const& c )
{
return c.begin();
}

template< typename T, Size N >
inline T* startOf( T (&a)[N] )
{
return a;
}

Types from the standard library use 'iterator' and 'const_iterator', but imagine
some other large set of types TheirOwnWay with e.g. 'Iter' and 'ConstIter', and
that those types are in numeruous different namespaces.

How can the functions above be modified so that it's simple to make them work
also with TheirOwnWay types, e.g. by defining some type trait thing?

I tried the to me "obvious" customization hook, like

template< typename T >
inline typename IterTrait<T>::T startOf( T& c ) ...

keeping the last overload above as-is, but this failed spectacularly when
calling startOf(a) where a is a raw array.

I'd rather avoid using Boost enable_if (or any Boost dependency).


Cheers,

- Alf
 
I

Ian Collins

Alf said:
I have e.g.

template< typename T >
inline typename T::iterator startOf( T& c )
{
return c.begin();
}

template< typename T >
inline typename T::const_iterator startOf( T const& c )
{
return c.begin();
}

template< typename T, Size N >
inline T* startOf( T (&a)[N] )
{
return a;
}

Types from the standard library use 'iterator' and 'const_iterator', but
imagine some other large set of types TheirOwnWay with e.g. 'Iter' and
'ConstIter', and that those types are in numeruous different namespaces.

How can the functions above be modified so that it's simple to make them
work also with TheirOwnWay types, e.g. by defining some type trait thing?

Wait for C+0x and use the proposed suffix return type syntax. This has
been added to solve this problem.

http://www2.research.att.com/~bs/C++0xFAQ.html#suffix-return
 
A

Alf P. Steinbach

* Ian Collins:
Alf said:
I have e.g.

template< typename T >
inline typename T::iterator startOf( T& c )
{
return c.begin();
}

template< typename T >
inline typename T::const_iterator startOf( T const& c )
{
return c.begin();
}

template< typename T, Size N >
inline T* startOf( T (&a)[N] )
{
return a;
}

Types from the standard library use 'iterator' and 'const_iterator',
but imagine some other large set of types TheirOwnWay with e.g. 'Iter'
and 'ConstIter', and that those types are in numeruous different
namespaces.

How can the functions above be modified so that it's simple to make
them work also with TheirOwnWay types, e.g. by defining some type
trait thing?

Wait for C+0x and use the proposed suffix return type syntax. This has
been added to solve this problem.

http://www2.research.att.com/~bs/C++0xFAQ.html#suffix-return

Thanks! Learned something new. :) Not sure if will solve problem, though, but
perhaps.


Cheers,

- Alf
 
A

Anthony Delroy

I have e.g.

     template< typename T >
     inline typename T::iterator startOf( T& c )
     {
         return c.begin();
     }

     template< typename T >
     inline typename T::const_iterator startOf( T const& c )
     {
         return c.begin();
     }

     template< typename T, Size N >
     inline T* startOf( T (&a)[N] )
     {
         return a;
     }

Types from the standard library use 'iterator' and 'const_iterator', but imagine
some other large set of types TheirOwnWay with e.g. 'Iter' and 'ConstIter', and
that those types are in numeruous different namespaces.

How can the functions above be modified so that it's simple to make them work
also with TheirOwnWay types, e.g. by defining some type trait thing?

I tried the to me "obvious" customization hook, like

     template< typename T >
     inline typename IterTrait<T>::T startOf( T& c ) ...

keeping the last overload above as-is, but this failed spectacularly when
calling startOf(a) where a is a raw array.

I'd rather avoid using Boost enable_if (or any Boost dependency).

Is there some reason not to overload startOf as below? This is
similar to the way I tend to add operator<<()...

Cheers,
Tony

#include <cassert>
#include <iostream>
#include <vector>

template< typename T >
inline typename T::iterator startOf( T& c )
{
std::cout << "startOf(T& c) returning T::iterator\n";
return c.begin();
}

template< typename T >
inline typename T::const_iterator startOf( T const& c )
{
std::cout << "startOf(const T& c) returning T::const_iterator\n";
return c.begin();
}

template< typename T, size_t N >
inline T* startOf( T (&a)[N] )
{
std::cout << "startOf(T (&a)[N]) returning a\n";
return a;
}

struct X
{
typedef const int* Const_Iterator;
typedef int* Iterator;

X(int a, int b) { a_[0] = a; a_[1] = b; }

Const_Iterator first() const { return a_; }
Iterator first() { return a_; }

friend Const_Iterator startOf(const X& x) {
std::cout << "startOf(const X&) returning X::Const_Iterator
\n";
return x.first();
}
friend Iterator startOf(X& x) {
std::cout << "startOf(X&) returning X::Iterator\n";
return x.first();
}

int a_[2];
};

int main()
{
std::vector<int> i;
i.push_back(4);
i.push_back(10);
assert(*startOf(i) == 4);
const std::vector<int>& ci = i;
assert(*startOf(ci) == 4);

int ai[2] = { 4, 10 };
assert(*startOf(ai) == 4);

X x(4, 10);
assert(*startOf(x) == 4);
const X& cx = x;
assert(*startOf(cx) == 4);
}
 
A

Alf P. Steinbach

* Anthony Delroy:
I have e.g.

template< typename T >
inline typename T::iterator startOf( T& c )
{
return c.begin();
}

template< typename T >
inline typename T::const_iterator startOf( T const& c )
{
return c.begin();
}

template< typename T, Size N >
inline T* startOf( T (&a)[N] )
{
return a;
}

Types from the standard library use 'iterator' and 'const_iterator', but imagine
some other large set of types TheirOwnWay with e.g. 'Iter' and 'ConstIter', and
that those types are in numeruous different namespaces.

How can the functions above be modified so that it's simple to make them work
also with TheirOwnWay types, e.g. by defining some type trait thing?

I tried the to me "obvious" customization hook, like

template< typename T >
inline typename IterTrait<T>::T startOf( T& c ) ...

keeping the last overload above as-is, but this failed spectacularly when
calling startOf(a) where a is a raw array.

I'd rather avoid using Boost enable_if (or any Boost dependency).

Is there some reason not to overload startOf as below? This is
similar to the way I tend to add operator<<()...

Cheers,
Tony

#include <cassert>
#include <iostream>
#include <vector>

template< typename T >
inline typename T::iterator startOf( T& c )
{
std::cout << "startOf(T& c) returning T::iterator\n";
return c.begin();
}

template< typename T >
inline typename T::const_iterator startOf( T const& c )
{
std::cout << "startOf(const T& c) returning T::const_iterator\n";
return c.begin();
}

template< typename T, size_t N >
inline T* startOf( T (&a)[N] )
{
std::cout << "startOf(T (&a)[N]) returning a\n";
return a;
}

struct X
{
typedef const int* Const_Iterator;
typedef int* Iterator;

X(int a, int b) { a_[0] = a; a_[1] = b; }

Const_Iterator first() const { return a_; }
Iterator first() { return a_; }

friend Const_Iterator startOf(const X& x) {
std::cout << "startOf(const X&) returning X::Const_Iterator
\n";
return x.first();
}
friend Iterator startOf(X& x) {
std::cout << "startOf(X&) returning X::Iterator\n";
return x.first();
}

int a_[2];
};

int main()
{
std::vector<int> i;
i.push_back(4);
i.push_back(10);
assert(*startOf(i) == 4);
const std::vector<int>& ci = i;
assert(*startOf(ci) == 4);

int ai[2] = { 4, 10 };
assert(*startOf(ai) == 4);

X x(4, 10);
assert(*startOf(x) == 4);
const X& cx = x;
assert(*startOf(cx) == 4);
}

Thanks. I was thinking of something that wouldn't require defining each of
'startOf', 'endOf' and 'size' for each class. But if that's what's practically
required then OK.


Cheers,

- Alf
 
A

Anthony Delroy

Thanks. I was thinking of something that wouldn't require defining each of
'startOf', 'endOf' and 'size' for each class. But if that's what's practically
required then OK.

Well, macros? :-(

Good luck,
Tony
 
W

werasm

I have e.g.

     template< typename T >
     inline typename T::iterator startOf( T& c )
     {
         return c.begin();
     }

     template< typename T >
     inline typename T::const_iterator startOf( T const& c )
     {
         return c.begin();
     }

     template< typename T, Size N >
     inline T* startOf( T (&a)[N] )
     {
         return a;
     }

Types from the standard library use 'iterator' and 'const_iterator', but imagine
some other large set of types TheirOwnWay with e.g. 'Iter' and 'ConstIter', and
that those types are in numeruous different namespaces.

How can the functions above be modified so that it's simple to make them work
also with TheirOwnWay types, e.g. by defining some type trait thing?

I tried the to me "obvious" customization hook, like

     template< typename T >
     inline typename IterTrait<T>::T startOf( T& c ) ...

keeping the last overload above as-is, but this failed spectacularly when
calling startOf(a) where a is a raw array.

I came up with the code below. CProxy would have to be specialized for
non standard containers (as for array). Unfortunately one needs the
extra call to c_proxy function template to resolve T, but IMO bettern
than specifying the template parameter:

#include <vector>

template <class T>
struct CProxy
{
typedef typename T::iterator iterator;
typedef T& ContRefT;

explicit CProxy( ContRefT c ): c_( c ){}
ContRefT c_;
};

template <class T, int N>
struct CProxy<T(&)[N]>
{
typedef T* iterator;
typedef T(&ContRefT)[N];

struct ArrayWrapper
{
ArrayWrapper( ContRefT c ): c_( c ){}
iterator begin() const { return &c_[0]; }
//...end etc...
ContRefT c_;
};

explicit CProxy( ContRefT c ): c_( c ){}
ArrayWrapper c_;
};

template <class ContT>
CProxy<ContT> c_proxy( ContT c )
{
return CProxy<ContT>( c );
}
template <class T, int N>
CProxy<T(&)[N]> c_proxy( T(&a)[N] )
{
return CProxy<T(&)[N]>( a );
}


template< typename T >
inline typename CProxy<T>::iterator
startOf( CProxy<T> cproxy )
{
return cproxy.c_.begin();
}

int main()
{
char array[5];
char* a =
startOf( c_proxy(array) );

const std::vector<char> vect;
std::vector<char>::iterator b =
startOf( c_proxy(vect) );

}


Kind regards,

Werner
 
A

Alf P. Steinbach

* werasm:
I have e.g.

template< typename T >
inline typename T::iterator startOf( T& c )
{
return c.begin();
}

template< typename T >
inline typename T::const_iterator startOf( T const& c )
{
return c.begin();
}

template< typename T, Size N >
inline T* startOf( T (&a)[N] )
{
return a;
}

Types from the standard library use 'iterator' and 'const_iterator', but imagine
some other large set of types TheirOwnWay with e.g. 'Iter' and 'ConstIter', and
that those types are in numeruous different namespaces.

How can the functions above be modified so that it's simple to make them work
also with TheirOwnWay types, e.g. by defining some type trait thing?

I tried the to me "obvious" customization hook, like

template< typename T >
inline typename IterTrait<T>::T startOf( T& c ) ...

keeping the last overload above as-is, but this failed spectacularly when
calling startOf(a) where a is a raw array.

I came up with the code below. CProxy would have to be specialized for
non standard containers (as for array). Unfortunately one needs the
extra call to c_proxy function template to resolve T, but IMO bettern
than specifying the template parameter:

#include <vector>

template <class T>
struct CProxy
{
typedef typename T::iterator iterator;
typedef T& ContRefT;

explicit CProxy( ContRefT c ): c_( c ){}
ContRefT c_;
};

template <class T, int N>
struct CProxy<T(&)[N]>
{
typedef T* iterator;
typedef T(&ContRefT)[N];

struct ArrayWrapper
{
ArrayWrapper( ContRefT c ): c_( c ){}
iterator begin() const { return &c_[0]; }
//...end etc...
ContRefT c_;
};

explicit CProxy( ContRefT c ): c_( c ){}
ArrayWrapper c_;
};

template <class ContT>
CProxy<ContT> c_proxy( ContT c )
{
return CProxy<ContT>( c );
}
template <class T, int N>
CProxy<T(&)[N]> c_proxy( T(&a)[N] )
{
return CProxy<T(&)[N]>( a );
}


template< typename T >
inline typename CProxy<T>::iterator
startOf( CProxy<T> cproxy )
{
return cproxy.c_.begin();
}

int main()
{
char array[5];
char* a =
startOf( c_proxy(array) );

const std::vector<char> vect;
std::vector<char>::iterator b =
startOf( c_proxy(vect) );

}

Thank you. I should perhaps have remembered to post my solution to this thread.
My original error, which was almost driving me nuts in its sheer ingrokkability,
was a trivial one, incredibly stupid, writing 'T (&)[N]' instead of 'T [N]'.

I'm sure if I'd posted that code many folks would have been better able to help
me; as it was they probably assumed that my code made sense!

Anyway, the solution I landed on consists of two header files, the first
containing ...


<code>
template< typename Type >
struct It
{
typedef typename Type::iterator T;
};

template< typename Type >
struct It< Type const >
{
typedef typename Type::const_iterator T;
};

template< typename ElemType, Size N >
struct It< ElemType[N] >
{
typedef ElemType* T;
};
</code>


.... and the second one, using the first, containing ...


<code>
template< typename T >
inline Size size( T const& c ) { return static_cast<Size>(
c.size() ); }

template< typename T, Size N >
inline Size size( T (&)[N] ) { return N; }

template< typename T >
inline typename It<T>::T startOf( T& c ) { return c.begin(); }

template< typename T, Size N >
inline T* startOf( T (&a)[N] ) { return a; }

template< typename T >
inline typename It<T>::T endOf( T& c ) { return c.end(); }

template< typename T, Size N >
inline T* endOf( T (&a)[N] ) { return a + N; }


#define CPPX_ALL_OF( v ) \
::my_namespace::startOf( v), ::my_namespace::endOf( v )
</code>


Cheers, & thanks,

- Alf (master of writing extraneous ampersands)
 

Ask a Question

Want to reply to this thread or ask your own question?

You'll need to choose a username for the site, which only take a couple of moments. After that, you can post your question and our members will help you out.

Ask a Question

Members online

Forum statistics

Threads
473,981
Messages
2,570,187
Members
46,731
Latest member
MarcyGipso

Latest Threads

Top