James Harlacher said:
Hi,
Are there any C compilers which have the erf function (from
probability) as part of their math libraries? Or are there any math
libraries available to download which implement this function?
Thanks,
James Harlacher
Yes. lcc-win32 uses Sun's implementation.
/* @(#)s_erf.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* double erf(double x)
* double erfc(double x)
* x
* 2 |\
* erf(x) = --------- | exp(-t*t)dt
* sqrt(pi) \|
* 0
*
* erfc(x) = 1-erf(x)
* Note that
* erf(-x) = -erf(x)
* erfc(-x) = 2 - erfc(x)
*
* Method:
* 1. For |x| in [0, 0.84375]
* erf(x) = x + x*R(x^2)
* erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
* = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
* where R = P/Q where P is an odd poly of degree 8 and
* Q is an odd poly of degree 10.
* -57.90
* | R - (erf(x)-x)/x | <= 2
*
*
* Remark. The formula is derived by noting
* erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
* and that
* 2/sqrt(pi) = 1.128379167095512573896158903121545171688
* is close to one. The interval is chosen because the fix
* point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
* near 0.6174), and by some experiment, 0.84375 is chosen to
* guarantee the error is less than one ulp for erf.
*
* 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
* c = 0.84506291151 rounded to single (24 bits)
* erf(x) = sign(x) * (c + P1(s)/Q1(s))
* erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
* 1+(c+P1(s)/Q1(s)) if x < 0
* |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
* Remark: here we use the taylor series expansion at x=1.
* erf(1+s) = erf(1) + s*Poly(s)
* = 0.845.. + P1(s)/Q1(s)
* That is, we use rational approximation to approximate
* erf(1+s) - (c = (single)0.84506291151)
* Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
* where
* P1(s) = degree 6 poly in s
* Q1(s) = degree 6 poly in s
*
* 3. For x in [1.25,1/0.35(~2.857143)],
* erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
* erf(x) = 1 - erfc(x)
* where
* R1(z) = degree 7 poly in z, (z=1/x^2)
* S1(z) = degree 8 poly in z
*
* 4. For x in [1/0.35,28]
* erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
* = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
* = 2.0 - tiny (if x <= -6)
* erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
* erf(x) = sign(x)*(1.0 - tiny)
* where
* R2(z) = degree 6 poly in z, (z=1/x^2)
* S2(z) = degree 7 poly in z
*
* Note1:
* To compute exp(-x*x-0.5625+R/S), let s be a single
* precision number and s := x; then
* -x*x = -s*s + (s-x)*(s+x)
* exp(-x*x-0.5626+R/S) =
* exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
* Note2:
* Here 4 and 5 make use of the asymptotic series
* exp(-x*x)
* erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
* x*sqrt(pi)
* We use rational approximation to approximate
* g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
* Here is the error bound for R1/S1 and R2/S2
* |R1/S1 - f(x)| < 2**(-62.57)
* |R2/S2 - f(x)| < 2**(-61.52)
*
* 5. For inf > x >= 28
* erf(x) = sign(x) *(1 - tiny) (raise inexact)
* erfc(x) = tiny*tiny (raise underflow) if x > 0
* = 2 - tiny if x<0
*
* 7. Special case:
* erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
* erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
* erfc/erf(NaN) is NaN
*/
static const double tiny = 1e-300,
half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
/* c = (float)0.84506291151 */
erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
/*
* Coefficients for approximation to erf on [0,0.84375]
*/
efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
/*
* Coefficients for approximation to erf in [0.84375,1.25]
*/
pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
/*
* Coefficients for approximation to erfc in [1.25,1/0.35]
*/
ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
/*
* Coefficients for approximation to erfc in [1/.35,28]
*/
rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
extern double exp(double);
extern double fabs(double);
double erf(double x)
{
int n0,hx,ix,i;
double R,S,P,Q,s,y,z,r;
n0 = ((*(int*)&one)>>29)^1;
hx = *(n0+(int*)&x);
ix = hx&0x7fffffff;
if(ix>=0x7ff00000) { /* erf(nan)=nan */
i = ((unsigned)hx>>31)<<1;
return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
}
if(ix < 0x3feb0000) { /* |x|<0.84375 */
if(ix < 0x3e300000) { /* |x|<2**-28 */
if (ix < 0x00800000)
return 0.125*(8.0*x+efx8*x); /*avoid underflow */
return x + efx*x;
}
z = x*x;
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
y = r/s;
return x + x*y;
}
if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
s = fabs(x)-one;
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
if(hx>=0) return erx + P/Q; else return -erx - P/Q;
}
if (ix >= 0x40180000) { /* inf>|x|>=6 */
if(hx>=0) return one-tiny; else return tiny-one;
}
x = fabs(x);
s = one/(x*x);
if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
ra5+s*(ra6+s*ra7))))));
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
sa5+s*(sa6+s*(sa7+s*sa8)))))));
} else { /* |x| >= 1/0.35 */
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
rb5+s*rb6)))));
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
sb5+s*(sb6+s*sb7))))));
}
z = x;
*(1-n0+(int*)&z) = 0;
r = exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S);
if(hx>=0) return one-r/x; else return r/x-one;
}
double erfc(double x)
{
int n0,hx,ix;
double R,S,P,Q,s,y,z,r;
n0 = ((*(int*)&one)>>29)^1;
hx = *(n0+(int*)&x);
ix = hx&0x7fffffff;
if(ix>=0x7ff00000) { /* erfc(nan)=nan */
/* erfc(+-inf)=0,2 */
return (double)(((unsigned)hx>>31)<<1)+one/x;
}
if(ix < 0x3feb0000) { /* |x|<0.84375 */
if(ix < 0x3c700000) /* |x|<2**-56 */
return one-x;
z = x*x;
r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
y = r/s;
if(hx < 0x3fd00000) { /* x<1/4 */
return one-(x+x*y);
} else {
r = x*y;
r += (x-half);
return half - r ;
}
}
if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
s = fabs(x)-one;
P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
if(hx>=0) {
z = one-erx; return z - P/Q;
} else {
z = erx+P/Q; return one+z;
}
}
if (ix < 0x403c0000) { /* |x|<28 */
x = fabs(x);
s = one/(x*x);
if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/
R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
ra5+s*(ra6+s*ra7))))));
S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
sa5+s*(sa6+s*(sa7+s*sa8)))))));
} else { /* |x| >= 1/.35 ~ 2.857143 */
if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
rb5+s*rb6)))));
S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
sb5+s*(sb6+s*sb7))))));
}
z = x;
*(1-n0+(int*)&z) = 0;
r = exp(-z*z-0.5625)*
exp((z-x)*(z+x)+R/S);
if(hx>0) return r/x; else return two-r/x;
} else {
if(hx>0) return tiny*tiny; else return two-tiny;
}
}