Nemesis system

Joined
May 11, 2020
Messages
15
Reaction score
0
Hello if you don't talk about Sauron's army, but about artificial intelligence with google there is a way to find code quickly for example on the site :
https://athena.ecs.csus.edu/~gordonvs/180/

Code:
/**************************************************
  Neural Network with Choosable Activation & Backpropagation
  --------------------------------------------------
  Adapted from D. Whitley, Colorado State University
  Modifications by S. Gordon
  --------------------------------------------------
  Version 5.0 - July 2017
    scaling removed, activation functions added
  --------------------------------------------------
  compile with g++ nn.c
****************************************************/

#include <iostream>
#include <fstream>
#include <cmath>
#include <cstdlib>
using namespace std;

// NN parameters  ------------------------------------------------
#define NumINs       4       // number of inputs, not including bias node
#define NumOUTs      1       // number of outputs, not including bias node
#define Criteria     0.01   // all training outputs must be within this for training to stop
#define TestCriteria 0.02     // all testing outputs must be within this for generalization

#define LearningRate 0.3     // most books suggest 0.3 as a starting point
#define Momentum     0.95    // must be >=0 and <1
#define bias        -1      // output value of bias node (usually 1, sometimes -1 for sigmoid)
#define weightInit   1.00    // weights are initialized randomly with this max magnitude
#define MaxIterate   1000000 // maximum number of iterations before giving up training
#define ReportIntv   101    // print report every time this many training cases done

// network topology ----------------------------------------------
#define NumNodes1    5       // col 1 - must equal NumINs+1 (extra node is bias node)
#define NumNodes2    20      // col 2 - hidden layer 1, etc.
#define NumNodes3    1       // output layer is last non-zero layer, and must equal NumOUTs
#define NumNodes4    0       // note - last node in input and hidden layers will be used as bias
#define NumNodes5    0       // note - there is no bias node in the output layer
#define NumNodes6    0
#define Activation1    0     // use activation=0 for input (first) layer and for unused laters
#define Activation2    1     // Specify desired activation function for hidden and output layers
#define Activation3    1     // 1=sig, 2=tanh, 3=relu, 4=leakyRelu, 5=linear
#define Activation4    0
#define Activation5    0
#define Activation6    0
#define NumOfCols    3       // number of non-zero layers specified above, including the input layer
#define NumOfRows    20      // largest layer - i.e., max number of rows in the network

// data files -----------------------------------------------
#define TrainFile    "BeamA.dat"  // file containing training data
#define TestFile     "BeamB.dat"  // file containing testing data
#define TrainCases   10           // number of training cases
#define TestCases    6            // number of test cases

// advanced settings ----------------------------------------
#define LeakyReluAmt 0.1


int NumRowsPer[6];          // number of rows used in each column incl. bias
                            // note - bias is not included on output layer
                            // note - leftmost value must equal NumINs+1
                            // note - rightmost value must equal NumOUTs

int ActivationPer[6];

double TrainArray[TrainCases][NumINs + NumOUTs];
double TestArray[TestCases][NumINs + NumOUTs];
int CritrIt = TrainCases;

ifstream train_stream;      // source of training data
ifstream test_stream;       // source of test data

void CalculateInputsAndOutputs ();
void TestInputsAndOutputs();
void TestForward();
void GenReport(int Iteration);
void TrainForward();
void FinReport(int Iteration);

double squashing(double Sum, int whichActiv);
double Dsquashing(double out, int whichActiv);

double ScaleOutput(double X, int which);
double ScaleDown(double X, int which);
void ScaleCriteria();

struct CellRecord
{
  double Output;
  double Error;
  double Weights[NumOfRows];
  double PrevDelta[NumOfRows];
};

struct CellRecord  CellArray[NumOfRows][NumOfCols];
double Inputs[NumINs];
double DesiredOutputs[NumOUTs];
double extrema[NumINs+NumOUTs][2]; // [0] is low, [1] is high
long   Iteration;
double ScaledCriteria[NumOUTs], ScaledTestCriteria[NumOUTs];

// ************************************************************
//  Get data from Training and Testing Files, put into arrays
// ************************************************************
void GetData()
{
  for (int i=0; i < (NumINs+NumOUTs); i++)
  { extrema[i][0]=99999.0; extrema[i][1]=-99999.0;
  }
  // read in training data
  train_stream.open(TrainFile);
  for (int i=0; i < TrainCases; i++)
  { for (int j=0; j < (NumINs+NumOUTs); j++)
    { train_stream >> TrainArray[i][j];
      if (TrainArray[i][j] < extrema[j][0]) extrema[j][0] = TrainArray[i][j];
      if (TrainArray[i][j] > extrema[j][1]) extrema[j][1] = TrainArray[i][j];
  } }
  train_stream.close();

  // read in test data
  test_stream.open(TestFile);
  for (int i=0; i < TestCases; i++)
  { for (int j=0; j < (NumINs+NumOUTs); j++)
    { test_stream >> TestArray[i][j];
      if (TestArray[i][j] < extrema[j][0]) extrema[j][0] = TestArray[i][j];
      if (TestArray[i][j] > extrema[j][1]) extrema[j][1] = TestArray[i][j];
  } }

  // guard against both extrema being equal
  for (int i=0; i < (NumINs+NumOUTs); i++)
  { if (extrema[i][0] == extrema[i][1]) extrema[i][1]=extrema[i][0]+1;
  }
  test_stream.close();

  // scale training and test data to range 0..1
  for (int i=0; i < TrainCases; i++)
  { for (int j=0; j < NumINs+NumOUTs; j++)
    { TrainArray[i][j] = ScaleDown(TrainArray[i][j],j);
  } }
  for (int i=0; i < TestCases; i++)
  { for (int j=0; j < NumINs+NumOUTs; j++)
      TestArray[i][j] = ScaleDown(TestArray[i][j],j);
} }

// **************************************************************
//  Assign the next training pair
// **************************************************************
void CalculateInputsAndOutputs()
{
  static int S=0;
  for (int i=0; i < NumINs; i++) Inputs[i]=TrainArray[S][i];
  for (int i=0; i < NumOUTs; i++) DesiredOutputs[i]=TrainArray[S][i+NumINs];
  S++;
  if (S==TrainCases) S=0;
}

// **************************************************************
//  Assign the next testing pair
// **************************************************************
void TestInputsAndOutputs()
{
  static int S=0;
  for (int i=0; i < NumINs; i++) Inputs[i]=TestArray[S][i];
  for (int i=0; i < NumOUTs; i++) DesiredOutputs[i]=TestArray[S][i+NumINs];
  S++;
  if (S==TestCases) S=0;
}

// *************************   MAIN   *************************************

int main()
{
  int    existsError, ConvergedIterations=0, sizeOfNext;
  long   seedval;
  double Sum, newDelta;

  Iteration=0;

  NumRowsPer[0] = NumNodes1;  ActivationPer[0] = Activation1;
  NumRowsPer[1] = NumNodes2;  ActivationPer[1] = Activation2;
  NumRowsPer[2] = NumNodes3;  ActivationPer[2] = Activation3;
  NumRowsPer[3] = NumNodes4;  ActivationPer[3] = Activation4;
  NumRowsPer[4] = NumNodes5;  ActivationPer[4] = Activation5;
  NumRowsPer[5] = NumNodes6;  ActivationPer[5] = Activation6;

  // initialize the weights to small random values
  // initialize previous changes to 0 (momentum)
  seedval = 555;
  srand(seedval);
  for (int I=1; I < NumOfCols; I++)
  { for (int J=0; J < NumRowsPer[I]-1; J++)
    { for (int K=0; K < NumRowsPer[I-1]; K++)
      { CellArray[J][I].Weights[K] =
          (weightInit*2.0) * ((double)((int)rand() % 100000 / 100000.0)) - weightInit;
        CellArray[J][I].PrevDelta[K] = 0;
  } } }

  GetData();  // read training and test data into arrays
  ScaleCriteria();

  cout << endl << "Iteration     Inputs          ";
  cout << "Desired Outputs          Actual Outputs" << endl;

  // -------------------------------
  // main training loop
  // -------------------------------
  do
  { // retrieve a training pair
    CalculateInputsAndOutputs();
    for (int J=0; J < NumRowsPer[0]-1; J++)
    { CellArray[J][0].Output = Inputs[J];
    }

    //*************************
    //    FORWARD PASS        *
    //*************************

    // hidden layers
    for (int I=1; I < NumOfCols-1; I++)
    { CellArray[NumRowsPer[I-1]-1][I-1].Output = bias;  // bias node at previous layer
      CellArray[NumRowsPer[I-1]-1][I-1].Error = 0.0;    // bias node at previous layer
      for (int J=0; J < NumRowsPer[I]-1; J++)
      { Sum = 0.0;
        for (int K=0; K < NumRowsPer[I-1]; K++)
        { Sum += CellArray[J][I].Weights[K]
               * CellArray[K][I-1].Output;
        }
        CellArray[J][I].Output = squashing(Sum, ActivationPer[I]);
        CellArray[J][I].Error = 0.0;
    } }

    CellArray[NumRowsPer[NumOfCols-2]-1][NumOfCols-2].Output = bias;  // bias feeding output
    CellArray[NumRowsPer[NumOfCols-2]-1][NumOfCols-2].Error = 0.0;
 
    // output layer
    for (int J=0; J < NumOUTs; J++)
    { Sum = 0.0;
      for (int K=0; K < NumRowsPer[NumOfCols-2]; K++)
      { Sum += CellArray[J][NumOfCols-1].Weights[K]
             * CellArray[K][NumOfCols-2].Output;
      }
      CellArray[J][NumOfCols-1].Output = squashing(Sum, ActivationPer[NumOfCols-1]);
      CellArray[J][NumOfCols-1].Error = 0.0;
    }

    //*************************
    //    BACKWARD PASS       *
    //*************************

    // calculate error at each output node
    for (int J=0; J < NumOUTs; J++)
    { CellArray[J][NumOfCols-1].Error =
        DesiredOutputs[J] - CellArray[J][NumOfCols-1].Output;
    }

    // check to see how many consecutive oks seen so far
    existsError = 0;
    for (int J=0; J < NumOUTs; J++)
    { if (fabs(CellArray[J][NumOfCols-1].Error) > ScaledCriteria[J])
        existsError = 1;
    }
    if (existsError == 0) ConvergedIterations++;
    else ConvergedIterations = 0;

    if (existsError == 1)
    {
      // apply derivative of squashing function to output errors
      for (int J=0; J < NumOUTs; J++)
      { CellArray[J][NumOfCols-1].Error
         *= Dsquashing(CellArray[J][NumOfCols-1].Output, ActivationPer[NumOfCols-1]);
      }

      // backpropogate errors to hidden layers
      for (int I=NumOfCols-2; I>=1; I--)
      { if (I==NumOfCols-2) sizeOfNext = NumRowsPer[I+1]; else sizeOfNext = NumRowsPer[I+1]-1;
        for (int J=0; J < NumRowsPer[I]; J++)
        { for (int K=0; K < sizeOfNext; K++)
          { CellArray[J][I].Error
            += (CellArray[K][I+1].Weights[J]
              * CellArray[K][I+1].Error);
        } }
        // apply derivative of squashing function to hidden layer errors
        for (int J=0; J < NumRowsPer[I]; J++)
        { CellArray[J][I].Error
          *= Dsquashing(CellArray[J][I].Output, ActivationPer[I]);
      } }

      // adjust weights  of hidden layers
      for (int I=1; I < NumOfCols-1; I++)
      { for (int J=0; J < NumRowsPer[I]-1; J++)
        { for (int K=0; K < NumRowsPer[I-1]; K++)
          { newDelta = (Momentum * CellArray[J][I].PrevDelta[K])
             + LearningRate * CellArray[K][I-1].Output * CellArray[J][I].Error;
            CellArray[J][I].Weights[K] += newDelta;
            CellArray[J][I].PrevDelta[K] = newDelta;
      } } }
      // adjust weights  of output layer
      for (int J=0; J < NumOUTs; J++)
      { for (int K=0; K < NumRowsPer[NumOfCols-2]; K++)
        { newDelta = (Momentum * CellArray[J][NumOfCols-1].PrevDelta[K])
           + LearningRate * CellArray[K][NumOfCols-2].Output * CellArray[J][NumOfCols-1].Error;
          CellArray[J][NumOfCols-1].Weights[K] += newDelta;
          CellArray[J][NumOfCols-1].PrevDelta[K] = newDelta;
    } } }

    GenReport(Iteration);
    Iteration++;
  } while (!((ConvergedIterations >= CritrIt) || (Iteration >= MaxIterate)));
  // end of main training loop
  // -------------------------------

  FinReport(ConvergedIterations);
  TrainForward();
  TestForward();
  return(0);
}

// *******************************************
//   Run Test Data forward pass only
// *******************************************
void TestForward()
{
  int GoodCount=0;
  double Sum, TotalError=0;
  cout << "Running Test Cases" << endl;
  for (int H=0; H < TestCases; H++)
  { TestInputsAndOutputs();
    for (int J=0; J < NumRowsPer[0]-1; J++)
    { CellArray[J][0].Output = Inputs[J];
    }
    // hidden layers
    for (int I=1; I < NumOfCols-1; I++)
    { for (int J=0; J < NumRowsPer[I]-1; J++)
      { Sum = 0.0;
        for (int K=0; K < NumRowsPer[I-1]; K++)
        { Sum += CellArray[J][I].Weights[K]
               * CellArray[K][I-1].Output;
        }
        CellArray[J][I].Output = squashing(Sum, ActivationPer[I]);
        CellArray[J][I].Error = 0.0;
      }
      CellArray[NumRowsPer[I]-1][I].Output = bias;  // bias node
      CellArray[NumRowsPer[I]-1][I].Error = bias;   // error at bias node weight
    }
    // output layer
    for (int J=0; J < NumOUTs; J++)
    { Sum = 0.0;
      for (int K=0; K < NumRowsPer[NumOfCols-2]; K++)
      { Sum += CellArray[J][NumOfCols-1].Weights[K]
             * CellArray[K][NumOfCols-2].Output;
      }
      CellArray[J][NumOfCols-1].Output = squashing(Sum, ActivationPer[NumOfCols-1]);
      CellArray[J][NumOfCols-1].Error =
        DesiredOutputs[J] - CellArray[J][NumOfCols-1].Output;
      if (fabs(CellArray[J][NumOfCols-1].Error) <= ScaledTestCriteria[J])
        GoodCount++;
      TotalError += CellArray[J][NumOfCols-1].Error *
                    CellArray[J][NumOfCols-1].Error;
    }
    GenReport(-1);
  }
  cout << endl;
  cout << "Sum Squared Error for Testing cases   = " << TotalError << endl;
  cout << "% of Testing Cases that meet criteria = " <<
              ((((double)GoodCount/(double)TestCases)) / (double)NumOUTs);
  cout << endl;
  cout << endl;
}

// ******************************************************
//   Run Training Data forward pass only, after training
// ******************************************************
void TrainForward()
{
  int GoodCount=0;
  double Sum, TotalError=0;
  cout << endl << "Confirm Training Cases" << endl;
  for (int H=0; H < TrainCases; H++)
  { CalculateInputsAndOutputs();
    for (int J=0; J < NumRowsPer[0]-1; J++)
    { CellArray[J][0].Output = Inputs[J];
    }
    // hidden layers
    for (int I=1; I < NumOfCols-1; I++)
    { for (int J=0; J < NumRowsPer[I]-1; J++)
      { Sum = 0.0;
        for (int K=0; K < NumRowsPer[I-1]; K++)
        { Sum += CellArray[J][I].Weights[K] * CellArray[K][I-1].Output;
        }
        CellArray[J][I].Output = squashing(Sum, ActivationPer[I]);
        CellArray[J][I].Error = 0.0;
    } }
    // output layer
    for (int J=0; J < NumOUTs; J++)
    { Sum = 0.0;
      for (int K=0; K < NumRowsPer[NumOfCols-2]; K++)
      { Sum += CellArray[J][NumOfCols-1].Weights[K]
             * CellArray[K][NumOfCols-2].Output;
      }
      CellArray[J][NumOfCols-1].Output = squashing(Sum, ActivationPer[NumOfCols-1]);
      CellArray[J][NumOfCols-1].Error =
        DesiredOutputs[J] - CellArray[J][NumOfCols-1].Output;
      if (fabs(CellArray[J][NumOfCols-1].Error) <= ScaledCriteria[J])
        GoodCount++;
      TotalError += CellArray[J][NumOfCols-1].Error *
                    CellArray[J][NumOfCols-1].Error;
    }
    GenReport(-1);
  }
  cout << endl;
  cout << "Sum Squared Error for Training cases   = " << TotalError << endl;
  cout << "% of Training Cases that meet criteria = " <<
              (((double)GoodCount/(double)TrainCases)/(double)NumOUTs) << endl;
  cout << endl;
}

// *******************************************
//   Final Report
// *******************************************
void FinReport(int CIterations)
{
  cout.setf(ios::fixed); cout.setf(ios::showpoint); cout.precision(4);
  if (CIterations<CritrIt) cout << "Failed to train to criteria" << endl;
  else cout << "Converged to within criteria" << endl;
  cout << "Total number of iterations = " << Iteration << endl;
}

// *******************************************
//   Generation Report
//   pass in a -1 if training is over and displaying results
// *******************************************
void GenReport(int Iteration)
{
  int J;
  cout.setf(ios::fixed); cout.setf(ios::showpoint); cout.precision(4);
  if ((Iteration == -1) || ((Iteration % ReportIntv) == 0))
  { if (Iteration != -1) cout << "  " << Iteration << "  ";
    for (J=0; J < NumRowsPer[0]-1; J++)
      cout << " " << ScaleOutput(Inputs[J],J);
    cout << "  ";
    for (J=0; J < NumOUTs; J++)
      cout << " " << ScaleOutput(DesiredOutputs[J], NumINs+J);
    for (J=0; J < NumOUTs; J++)
      cout << " " << ScaleOutput(CellArray[J][NumOfCols-1].Output, NumINs+J);
    for (J=0; J < NumOUTs; J++)
      cout << "   " << fabs(ScaleOutput(DesiredOutputs[J],NumINs+J)-ScaleOutput(CellArray[J][NumOfCols-1].Output,NumINs+J));
    cout << endl;
  }
}

// *******************************************
//          Scale Desired Output
// *******************************************
double ScaleDown(double X, int output)
{ return .9*(X-extrema[output][0])/(extrema[output][1]-extrema[output][0])+.05;
}

// ********************************************
//         Scale actual output to original range
// ********************************************
double ScaleOutput(double X, int output)
{
  double range = extrema[output][1] - extrema[output][0];
  double scaleUp = ((X-.05)/.9) * range;
  return (extrema[output][0] + scaleUp);
}

// *******************************************
//          Scale criteria
// *******************************************
void ScaleCriteria()
{ int J;
  for (J=0; J < NumOUTs; J++)
    ScaledCriteria[J] = .9*Criteria/(extrema[NumINs+J][1]-extrema[NumINs+J][0]);
  for (J=0; J < NumOUTs; J++)
    ScaledTestCriteria[J] = .9*TestCriteria/(extrema[NumINs+J][1]-extrema[NumINs+J][0]);
}

// **********************************************
//    Activation ("squashing") Function
// **********************************************
double squashing(double Sum, int whichAct)
{ double squash;
  if (whichAct == 0)
  { cout << "Error - activation 0 requested" << endl; squash = 0.0;
  }
  else if (whichAct == 1)           // sigmoid
  { squash = 1.0/(1.0+exp(-Sum));
  }
  else if (whichAct == 2)           // tanh
  { squash = tanh(Sum);
  }
  else if (whichAct == 3)           // relu
  { squash = 0.0;
    if (Sum > 0.0) squash = Sum;
  }
  else if (whichAct == 4)           // leaky relu
  { squash = 0.0;
    if (Sum > 0.0) squash = Sum;
    if (Sum < 0.0) squash = LeakyReluAmt * Sum;
  }
  else if (whichAct == 5)           // linear
  { squash = Sum;
  }
  return squash;
}

// **********************************************
//    Derivative of Squashing Function
// **********************************************
double Dsquashing(double out, int whichAct)
{ double dsquash;
  if (whichAct == 0)
  { cout << "Error - derivative of activation 0 requested" << endl; dsquash=0.0;
  }
  else if (whichAct == 1)                 // sigmoid
  { dsquash = out * (1.0-out);
  }
  else if (whichAct == 2)                 // tanh
  { dsquash = 1.0 - tanh(out) * tanh(out);
  }
  else if (whichAct == 3)                 // relu
  { dsquash = 0.0;
    if (out > 0.0) dsquash = 1.0;
  }
  else if (whichAct == 4)                 // leaky relu
  { dsquash = 0.0;
    if (out > 0.0) dsquash = 1.0;
    if (out < 0.0) dsquash = LeakyReluAmt;
  }
  else if (whichAct == 5)                 // linear
  { dsquash = 1.0;
  }
  return dsquash;
}


The BeamA.dat file contains data of type :
.40 .40 .190 .190 .6313
.20 .20 .120 .240 .3630
.35 .35 .035 .035 .1000
.15 .15 .045 .120 .1400
.15 .15 .035 .095 .1000
.06 .06 .018 .123 .0490
.12 .06 .018 .067 .1000
.10 .10 .007 .028 .0233
.06 .06 .004 .024 .0110
.20 .20 .050 .100 .1590


and BeamB.dat :

.20 .20 .030 .060 .1000
.30 .30 .095 .127 .3900
.15 .15 .010 .027 .0415
.40 .40 .120 .120 .4830
.28 .28 .120 .171 .3900
.17 .17 .020 .047 .0700
 

Ask a Question

Want to reply to this thread or ask your own question?

You'll need to choose a username for the site, which only take a couple of moments. After that, you can post your question and our members will help you out.

Ask a Question

Similar Threads


Members online

No members online now.

Forum statistics

Threads
473,990
Messages
2,570,211
Members
46,796
Latest member
SteveBreed

Latest Threads

Top