We often find hidden, and totally unnecessary, assumptions being
made in code. The following leans heavily on one particular
example, which happens to be in C. However similar things can (and
do) occur in any language.
These assumptions are generally made because of familiarity with
the language. As a non-code example, consider the idea that the
faulty code is written by blackguards bent on foulling the
language. The term blackguards is not in favor these days, and for
good reason. However, the older you are, the more likely you are
to have used it since childhood, and to use it again, barring
specific thought on the subject. The same type of thing applies to
writing code.
I hope, with this little monograph, to encourage people to examine
some hidden assumptions they are making in their code. As ever, in
dealing with C, the reference standard is the ISO C standard.
Versions can be found in text and pdf format, by searching for N869
and N1124. [1] The latter does not have a text version, but is
more up-to-date.
We will always have innocent appearing code with these kinds of
assumptions built-in. However it would be wise to annotate such
code to make the assumptions explicit, which can avoid a great deal
of agony when the code is reused under other systems.
In the following example, the code is as downloaded from the
referenced URL, and the comments are entirely mine, including the
'every 5' linenumber references.
/* Making fatal hidden assumptions */
/* Paul Hsiehs version of strlen.
http://www.azillionmonkeys.com/qed/asmexample.html
Some sneaky hidden assumptions here:
1. p = s - 1 is valid. Not guaranteed. Careless coding.
2. cast (int) p is meaningful. Not guaranteed.
3. Use of 2's complement arithmetic.
4. ints have no trap representations or hidden bits.
5. 4 == sizeof(int) && 8 == CHAR_BIT.
6. size_t is actually int.
7. sizeof(int) is a power of 2.
8. int alignment depends on a zeroed bit field.
Since strlen is normally supplied by the system, the system
designer can guarantee all but item 1. Otherwise this is
not portable. Item 1 can probably be beaten by suitable
code reorganization to avoid the initial p = s - 1. This
is a serious bug which, for example, can cause segfaults
on many systems. It is most likely to foul when (int)s
has the value 0, and is meaningful.
He fails to make the valid assumption: 1 == sizeof(char).
*/
#define hasNulByte(x) ((x - 0x01010101) & ~x & 0x80808080)
#define SW (sizeof (int) / sizeof (char))
int xstrlen (const char *s) {
const char *p; /* 5 */
int d;
p = s - 1;
do {
p++; /* 10 */
if ((((int) p) & (SW - 1)) == 0) {
do {
d = *((int *) p);
p += SW;
} while (!hasNulByte (d)); /* 15 */
p -= SW;
}
} while (*p != 0);
return p - s;
} /* 20 */
Let us start with line 1! The constants appear to require that
sizeof(int) be 4, and that CHAR_BIT be precisely 8. I haven't
really looked too closely, and it is possible that the ~x term
allows for larger sizeof(int), but nothing allows for larger
CHAR_BIT. A further hidden assumption is that there are no trap
values in the representation of an int. Its functioning is
doubtful when sizeof(int) is less that 4. At the least it will
force promotion to long, which will seriously affect the speed.
This is an ingenious and speedy way of detecting a zero byte within
an int, provided the preconditions are met. There is nothing wrong
with it, PROVIDED we know when it is valid.
In line 2 we have the confusing use of sizeof(char), which is 1 by
definition. This just serves to obscure the fact that SW is
actually sizeof(int) later. No hidden assumptions have been made
here, but the usage helps to conceal later assumptions.
Line 4. Since this is intended to replace the systems strlen()
function, it would seem advantageous to use the appropriate
signature for the function. In particular strlen returns a size_t,
not an int. size_t is always unsigned.
In line 8 we come to a biggie. The standard specifically does not
guarantee the action of a pointer below an object. The only real
purpose of this statement is to compensate for the initial
increment in line 10. This can be avoided by rearrangement of the
code, which will then let the routine function where the
assumptions are valid. This is the only real error in the code
that I see.
In line 11 we have several hidden assumptions. The first is that
the cast of a pointer to an int is valid. This is never
guaranteed. A pointer can be much larger than an int, and may have
all sorts of non-integer like information embedded, such as segment
id. If sizeof(int) is less than 4 the validity of this is even
less likely.
Then we come to the purpose of the statement, which is to discover
if the pointer is suitably aligned for an int. It does this by
bit-anding with SW-1, which is the concealed sizeof(int)-1. This
won't be very useful if sizeof(int) is, say, 3 or any other
non-poweroftwo. In addition, it assumes that an aligned pointer
will have those bits zero. While this last is very likely in
todays systems, it is still an assumption. The system designer is
entitled to assume this, but user code is not.
Line 13 again uses the unwarranted cast of a pointer to an int.
This enables the use of the already suspicious macro hasNulByte in
line 15.
If all these assumptions are correct, line 19 finally calculates a
pointer difference (which is valid, and of type size_t or ssize_t,
but will always fit into a size_t). It then does a concealed cast
of this into an int, which could cause undefined or implementation
defined behaviour if the value exceeds what will fit into an int.
This one is also unnecessary, since it is trivial to define the
return type as size_t and guarantee success.
I haven't even mentioned the assumption of 2's complement
arithmetic, which I believe to be embedded in the hasNulByte
macro. I haven't bothered to think this out.
Would you believe that so many hidden assumptions can be embedded
in such innocent looking code? The sneaky thing is that the code
appears trivially correct at first glance. This is the stuff that
Heisenbugs are made of. Yet use of such code is fairly safe if we
are aware of those hidden assumptions.