Pascal Bourguignon said:
If you can find an isomorphism between the structures of these
transforms and the set of numbers you consider, yep.
But an isomorphism always exist. Or, atleast an isometry. y = ax + b and
even y = b are simple isomorphism in a group(and hence a ring and field)
that let you get all the other elements.
f(x) = ax + b;
hence f(x + y) = a*(x+y) + 2b = a*x + b + a*y + b = f(x) + f(y)
hence f(x) is a homeomorphism and its obvious thats its an isomorphism.
I didn't speak of universal equivalence, I spoke of equivalence of the
logarithmic scale (with addition) and the linear scale (with
multiplication).
I'm not sure what your talking about any more but if you think that just
because we compute algorithmically sum(log(k),k=2..n) then it is the same as
computing log(n!) then your wrong. It can easily be proven by writing the
two algorithms out and computing there run time.
Now, if you mean they are equivilent representations of the same
mathematical entity then your right, thats the whole point. If they were not
then there would be no use us to use the quicker(algorithm). But just
because something is equivilent mathematically doesn't mean that they are
equivilent algorithmically(or other ways too).
3 = 12/4.
these are different mathematical representations of the same concept... they
are not different algorithmic representations of the same concept as they
are also not different symbolic representations of the same concept(what I
mean is that symbolically they are not the same just as they are not
algorithmically the same but they are mathematically the same).
Now one might ask why things that are mathematically equivilent not
algorithmically equivilent and thats a valid question. I think the answer
is simply that if it was the case then we would probably be asking the
opposite. (and life would be much harder as there would be no way to
simplify things).