numpy (matrix solver) - python vs. matlab

R

Russ P.

Me would like to hear more! :)

It would really appreciate if anyone could maybe post a simple SVD
example and tell what the vectors from the SVD represents geometrically
/ visually, because I don't understand it good enough and I'm sure it's
very important, when it comes to solving matrix systems...

SVD is perhaps the ultimate matrix decomposition and the ultimate tool
for linear analysis. Google it and take a look at the excellent
Wikipedia page on it. I would be wasting my time if I tried to compete
with that.

To really appreciate the SVD, you need some background in linear
algebra. In particular, you need to understand orthogonal
transformations. Think about a standard 3D Cartesian coordinate frame.
A rotation of the coordinate frame is an orthogonal transformation of
coordinates. The original frame and the new frame are both orthogonal.
A vector in one frame is converted to the other frame by multiplying
by an orthogonal matrix. The main feature of an orthogonal matrix is
that its transpose is its inverse (hence the inverse is trivial to
compute).

The SVD can be thought of as factoring any linear transformation into
a rotation, then a scaling, followed by another rotation. The scaling
is represented by the middle matrix of the transformation, which is a
diagonal matrix of the same dimensions as the original matrix. The
singular values can be read off of the diagonal. If any of them are
zero, then the original matrix is singular. If the ratio of the
largest to smallest singular value is large, then the original matrix
is said to be poorly conditioned.

Standard Cartesian coordinate frames are orthogonal. Imagine an x-y
coordinate frame in which the axes are not orthogonal. Such a
coordinate frame is possible, but they are rarely used. If the axes
are parallel, the coordinate frame will be singular and will basically
reduce to one-dimensional. If the x and y axes are nearly parallel,
the coordinate frame could still be used in theory, but it will be
poorly conditioned. You will need large numbers to represent points
fairly close to the origin, and small deviations will translate into
large changes in coordinate values. That can lead to problems due to
numerical roundoff errors and other kinds of errors.

--Russ P.
 
P

Paul Rubin

someone said:
I don't understand what else I should write. I gave the singular
matrix and that's it. Nothing more is to say about this problem,

You could write what your application is. What do the numbers in that
matrix actually represent?
except it would be nice to learn some things for future use (for
instance understanding SVD more

The Wikipedia article about SVD is pretty good.
Still, I dont think I completely understand SVD. SVD (at least in
Matlab) returns 3 matrices, one is a diagonal matrix I think.

Yes. Two diagonal matrices and a unitary matrix. The diagonal matrices
have the singular values which are the magnitudes of the matrix's
eigenvalues. A matrix (for simplicity consider it to have nonzero
determinant) represents a linear transformation in space. Think of a
bunch of vectors as arrows sticking out of the origin in different
directions, and consider what happens to them if you use the matrix to
act on all of them at once. You could break the transformation into 3
steps: 1) scale the axes by suitable amounts, so all the vectors stretch
or shrink depending on their directions. 2) Rotate all the vectors
without changing their lengths, through some combination of angles; 3)
undo the scaling transformation so that the vectors get their original
lengths back. Each of these 3 steps can be described by a matrix and
the 3 matrices are what SVD calculates.

I still don't have any idea whether this info is going to do you any
good. There are some quite knowledgeable numerics folks here (I'm not
one) who can probably be of more help, but frankly your questions don't
make a whole lot of sense.

You might get the book "Numerical Recipes" which is old but instructive.
Maybe someone else here has other recommendations.
 
P

Paul Rubin

Russ P. said:
The SVD can be thought of as factoring any linear transformation into
a rotation, then a scaling, followed by another rotation.

Ah yes, my description was backwards, sorry.
 
S

Steven D'Aprano

I don't understand what else I should write. I gave the singular matrix
and that's it.

You can't judge what an acceptable condition number is unless you know
what your data is.

http://mathworld.wolfram.com/ConditionNumber.html
http://en.wikipedia.org/wiki/Condition_number

If your condition number is ten, then you should expect to lose one digit
of accuracy in your solution, over and above whatever loss of accuracy
comes from the numeric algorithm. A condition number of 64 will lose six
bits, or about 1.8 decimal digits, of accuracy.

If your data starts off with only 1 or 2 digits of accuracy, as in your
example, then the result is meaningless -- the accuracy will be 2-2
digits, or 0 -- *no* digits in the answer can be trusted to be accurate.
 
S

Steven_Lord

I'm not going to answer, and the reason why is that saying "the limit is X"
may lead you to believe that "as long as my condition number is less than X,
I'm safe." That's not the case. The threshold above which MATLAB warns is
the fence that separates the tourists from the edge of the cliff of
singularity -- just because you haven't crossed the fence doesn't mean
you're not in danger of tripping and falling into the ravine.
The threshold of acceptability really depends on the problem you are
trying to solve.

I agree with this statement, although you generally don't want it to be too
big. The definition of "too big" is somewhat fluid, though.
I haven't solved linear equations for a long time,
but off hand, I would say that a condition number over 10 is
questionable.

That seems pretty low as a general bound IMO.
A high condition number suggests that the selection of independent
variables for the linear function you are trying to fit is not quite
right. For a poorly conditioned matrix, your modeling function will be
very sensitive to measurement noise and other sources of error, if
applicable. If the condition number is 100, then any input on one
particular axis gets magnified 100 times more than other inputs.
Unless your inputs are very precise, that is probably not what you
want.

Or something like that.

Russ, you and the OP (and others) may be interested in one of the books that
Cleve Moler has written and made freely available on the MathWorks website:

http://www.mathworks.com/moler/

The chapter Linear Equations in "Numerical Computing with MATLAB" includes a
section (section 2.9, starting on page 14 if I remember correctly) that
discusses norm and condition number and gives a more formal statement of
what you described. The code included in the book is written in MATLAB, but
even if you don't use MATLAB (since I know this has been cross-posted to
comp.lang.python) there's plenty of good, crunchy mathematics in that
section.
 
S

someone

SVD is perhaps the ultimate matrix decomposition and the ultimate tool
for linear analysis. Google it and take a look at the excellent
Wikipedia page on it. I would be wasting my time if I tried to compete
with that.
Ok.

To really appreciate the SVD, you need some background in linear
algebra. In particular, you need to understand orthogonal
transformations. Think about a standard 3D Cartesian coordinate frame.
A rotation of the coordinate frame is an orthogonal transformation of
coordinates. The original frame and the new frame are both orthogonal.
Yep.

A vector in one frame is converted to the other frame by multiplying
by an orthogonal matrix. The main feature of an orthogonal matrix is
that its transpose is its inverse (hence the inverse is trivial to
compute).

As far as i know, you have to replace orthogonal with: orthonormal. That
much I at least think I know without even going to wikipedia first...
The SVD can be thought of as factoring any linear transformation into
a rotation, then a scaling, followed by another rotation. The scaling
is represented by the middle matrix of the transformation, which is a
diagonal matrix of the same dimensions as the original matrix. The
singular values can be read off of the diagonal. If any of them are
zero, then the original matrix is singular. If the ratio of the
largest to smallest singular value is large, then the original matrix
is said to be poorly conditioned.

Aah, thank you very much. I can easily recognize some of this...
Standard Cartesian coordinate frames are orthogonal. Imagine an x-y
coordinate frame in which the axes are not orthogonal. Such a
coordinate frame is possible, but they are rarely used. If the axes
are parallel, the coordinate frame will be singular and will basically
reduce to one-dimensional. If the x and y axes are nearly parallel,
the coordinate frame could still be used in theory, but it will be
poorly conditioned. You will need large numbers to represent points
fairly close to the origin, and small deviations will translate into
large changes in coordinate values. That can lead to problems due to
numerical roundoff errors and other kinds of errors.

Thank you very much for your time. It always helps to get the same
explanation from different people with slightly different ways of
explaining it. Thanks!
 
S

someone

You can't judge what an acceptable condition number is unless you know
what your data is.

http://mathworld.wolfram.com/ConditionNumber.html
http://en.wikipedia.org/wiki/Condition_number

If your condition number is ten, then you should expect to lose one digit
of accuracy in your solution, over and above whatever loss of accuracy
comes from the numeric algorithm. A condition number of 64 will lose six
bits, or about 1.8 decimal digits, of accuracy.

If your data starts off with only 1 or 2 digits of accuracy, as in your
example, then the result is meaningless -- the accuracy will be 2-2
digits, or 0 -- *no* digits in the answer can be trusted to be accurate.

I just solved a FEM eigenvalue problem where the condition number of the
mass and stiffness matrices was something like 1e6... Result looked good
to me... So I don't understand what you're saying about 10 = 1 or 2
digits. I think my problem was accurate enough, though I don't know what
error with 1e6 in condition number, I should expect. How did you arrive
at 1 or 2 digits for cond(A)=10, if I may ask ?
 
S

someone

Russ, you and the OP (and others) may be interested in one of the books
that Cleve Moler has written and made freely available on the MathWorks
website:

http://www.mathworks.com/moler/

The chapter Linear Equations in "Numerical Computing with MATLAB"
includes a section (section 2.9, starting on page 14 if I remember
correctly) that discusses norm and condition number and gives a more
formal statement of what you described. The code included in the book is
written in MATLAB, but even if you don't use MATLAB (since I know this
has been cross-posted to comp.lang.python) there's plenty of good,
crunchy mathematics in that section.

I use matlab more than python. I just want to learn python, which seems
extremely powerful and easy but yet, I'm a python beginner.

Thank you very much for the reference, Mr. Lord. I'll look closely at
that Moler-book, in about 1/2 hour or so.... Looking forward to learning
more about this...
 
R

Russ P.

I just solved a FEM eigenvalue problem where the condition number of the
mass and stiffness matrices was something like 1e6... Result looked good
to me... So I don't understand what you're saying about 10 = 1 or 2
digits. I think my problem was accurate enough, though I don't know what
error with 1e6 in condition number, I should expect. How did you arrive
at 1 or 2 digits for cond(A)=10, if I may ask ?

As Steven pointed out earlier, it all depends on the precision you are
dealing with. If you are just doing pure mathematical or numerical
work with no real-world measurement error, then a condition number of
1e6 may be fine. But you had better be using "double precision" (64-
bit) floating point numbers (which are the default in Python, of
course). Those have approximately 12 digits of precision, so you are
in good shape. Single-precision floats only have 6 or 7 digits of
precision, so you'd be in trouble there.

For any practical engineering or scientific work, I'd say that a
condition number of 1e6 is very likely to be completely unacceptable.
 
S

someone

As Steven pointed out earlier, it all depends on the precision you are
dealing with. If you are just doing pure mathematical or numerical
work with no real-world measurement error, then a condition number of
1e6 may be fine. But you had better be using "double precision" (64-
bit) floating point numbers (which are the default in Python, of
course). Those have approximately 12 digits of precision, so you are
in good shape. Single-precision floats only have 6 or 7 digits of
precision, so you'd be in trouble there.

For any practical engineering or scientific work, I'd say that a
condition number of 1e6 is very likely to be completely unacceptable.

So how do you explain that the natural frequencies from FEM (with
condition number ~1e6) generally correlates really good with real
measurements (within approx. 5%), at least for the first 3-4 natural
frequencies?

I would say that the problem lies with the highest natural frequencies,
they for sure cannot be verified - there's too little energy in them.
But the lowest frequencies (the most important ones) are good, I think -
even for high cond number.
 
R

Russ P.

So how do you explain that the natural frequencies from FEM (with
condition number ~1e6) generally correlates really good with real
measurements (within approx. 5%), at least for the first 3-4 natural
frequencies?

I would say that the problem lies with the highest natural frequencies,
they for sure cannot be verified - there's too little energy in them.
But the lowest frequencies (the most important ones) are good, I think -
even for high cond number.

Did you mention earlier what "FEM" stands for? If so, I missed it. Is
it finite-element modeling? Whatever the case, note that I said, "If
you are just doing pure mathematical or numerical work with no real-
world measurement error, then a condition number of
1e6 may be fine." I forgot much more than I know about finite-element
modeling, but isn't it a purely numerical method of analysis? If that
is the case, then my comment above is relevant.

By the way, I didn't mean to patronize you with my earlier explanation
of orthogonal transformations. They are fundamental to understanding
the SVD, and I thought it might be interesting to anyone who is not
familiar with the concept.
 
S

someone

Did you mention earlier what "FEM" stands for? If so, I missed it. Is
it finite-element modeling? Whatever the case, note that I said, "If

Sorry, yes: Finite Element Model.
you are just doing pure mathematical or numerical work with no real-
world measurement error, then a condition number of
1e6 may be fine." I forgot much more than I know about finite-element
modeling, but isn't it a purely numerical method of analysis? If that

I'm not sure exactly, what is the definition of a purely numerical
method of analysis? I would guess that the answer is yes, it's a purely
numerical method? But I also thing it's a practical engineering or
scientific work...
is the case, then my comment above is relevant.

Uh, I just don't understand the difference:

1) "For any practical engineering or scientific work, I'd say that a
condition number of 1e6 is very likely to be completely unacceptable."

vs.

2) "If you are just doing pure mathematical or numerical work with no
real-world measurement error, then a condition number of, 1e6 may be fine."

I would think that FEM is a practical engineering work and also pure
numerical work... Or something...
By the way, I didn't mean to patronize you with my earlier explanation
of orthogonal transformations. They are fundamental to understanding
the SVD, and I thought it might be interesting to anyone who is not
familiar with the concept.

Don't worry, I think it was really good and I don't think anyone
patronized me, on the contrary, people was/is very helpful. SVD isn't my
strongest side and maybe I should've thought a bit more about this
singular matrix and perhaps realized what some people here already
explained, a bit earlier (maybe before I asked). Anyway, it's been good
to hear/read what you've (and others) have written.

Yesterday and earlier today I was at work during the day so
answering/replying took a bit longer than I like, considering the huge
flow of posts in the matlab group. But now I'm home most of the time,
for the next 3 days and will check for followup posts quite frequent, I
think...
 
R

Russ P.

Yeah, I realized that I should rephrase my previous statement to
something like this:

For any *empirical* engineering or scientific work, I'd say that a
condition number of 1e6 is likely to be unacceptable.

I'd put finite elements into the category of theoretical and numerical
rather than empirical. Still, a condition number of 1e6 would bother
me, but maybe that's just me.

--Russ P.
 
S

someone

Yeah, I realized that I should rephrase my previous statement to
something like this:

For any *empirical* engineering or scientific work, I'd say that a
condition number of 1e6 is likely to be unacceptable.

Still, I don't understand it. Do you have an example of this kind of
work, if it's not FEM?
I'd put finite elements into the category of theoretical and numerical
rather than empirical. Still, a condition number of 1e6 would bother
me, but maybe that's just me.

Ok, but I just don't understand what's in the "empirical" category, sorry...

Maybe the conclusion is just that if cond(A) > 1e15 or 1e16, then that
problem shouldn't be solved and maybe this is also approx. where matlab
has it's warning-threshold (maybe, I'm just guessing here)... So, maybe
I could perhaps use that limit in my future python program (when I find
out how to get the condition number etc, but I assume this can be
googled for with no problems)...
 
S

Steven D'Aprano

So how do you explain that the natural frequencies from FEM (with
condition number ~1e6) generally correlates really good with real
measurements (within approx. 5%), at least for the first 3-4 natural
frequencies?

I would counter your hand-waving ("correlates really good", "within
approx 5%" of *what*?) with hand-waving of my own:

"Sure, that's exactly what I would expect!"

*wink*

By the way, if I didn't say so earlier, I'll say so now: the
interpretation of "how bad the condition number is" will depend on the
underlying physics and/or mathematics of the situation. The
interpretation of loss of digits of precision is a general rule of thumb
that holds in many diverse situations, not a rule of physics that cannot
be broken in this universe.

If you have found a scenario where another interpretation of condition
number applies, good for you. That doesn't change the fact that, under
normal circumstances when trying to solve systems of linear equations, a
condition number of 1e6 is likely to blow away *all* the accuracy in your
measured data. (Very few physical measurements are accurate to more than
six digits.)
 
R

Russ P.

Still, I don't understand it. Do you have an example of this kind of
work, if it's not FEM?


Ok, but I just don't understand what's in the "empirical" category, sorry....

I didn't look it up, but as far as I know, empirical just means based
on experiment, which means based on measured data. Unless I am
mistaken , a finite element analysis is not based on measured data.
Yes, the results can be *compared* with measured data and perhaps
calibrated with measured data, but those are not the same thing.

I agree with Steven D's comment above, and I will reiterate that a
condition number of 1e6 would not inspire confidence in me. If I had a
condition number like that, I would look for a better model. But
that's just a gut reaction, not a hard scientific rule.
 
S

someone

I would counter your hand-waving ("correlates really good", "within
approx 5%" of *what*?) with hand-waving of my own:

Within 5% of experiments of course.
There is not much else to compare with.
"Sure, that's exactly what I would expect!"

*wink*

By the way, if I didn't say so earlier, I'll say so now: the
interpretation of "how bad the condition number is" will depend on the
underlying physics and/or mathematics of the situation. The
interpretation of loss of digits of precision is a general rule of thumb
that holds in many diverse situations, not a rule of physics that cannot
be broken in this universe.

If you have found a scenario where another interpretation of condition
number applies, good for you. That doesn't change the fact that, under
normal circumstances when trying to solve systems of linear equations, a
condition number of 1e6 is likely to blow away *all* the accuracy in your
measured data. (Very few physical measurements are accurate to more than
six digits.)

Not true, IMHO.

Eigenfrequencies (I think that is a very typical physical measurement
and I cannot think of something that is more typical) don't need to be
accurate with 6 digits. I'm happy with below 5% error. So if an
eigenfrequency is measured to 100 Hz, I'm happy if the numerical model
gives a result in the 5%-range of 95-105 Hz. This I got with a condition
number of approx. 1e6 and it's good enough for me. I don't think anyone
expects 6-digit accuracy with eigenfrequncies.
 
S

someone

I didn't look it up, but as far as I know, empirical just means based
on experiment, which means based on measured data. Unless I am

FEM based on measurement data? Still, I don't understand it, sorry.
mistaken , a finite element analysis is not based on measured data.

I'm probably a bit narrow-thinking because I just worked with this small
FEM-program (in Matlab), but can you please give an example of a
matrix-problem that is based on measurement data?
Yes, the results can be *compared* with measured data and perhaps
calibrated with measured data, but those are not the same thing.

Exactly. That's why I don't understand what solving a matrix system
using measurement/empirical data, could typically be an example of...?
I agree with Steven D's comment above, and I will reiterate that a
condition number of 1e6 would not inspire confidence in me. If I had a
condition number like that, I would look for a better model. But
that's just a gut reaction, not a hard scientific rule.

I don't have any better model and don't know anything better. I still
think that 5% accuracy is good enough and that nobody needs 6-digits
precision for practical/engineering/empirical work... Maybe quantum
physicists needs more than 6 digits of accuracy, but most
practical/engineering problems are ok with an accuracy of 5%, I think,
IMHO... Please tell me if I'm wrong.
 

Ask a Question

Want to reply to this thread or ask your own question?

You'll need to choose a username for the site, which only take a couple of moments. After that, you can post your question and our members will help you out.

Ask a Question

Members online

No members online now.

Forum statistics

Threads
474,146
Messages
2,570,832
Members
47,374
Latest member
EmeliaBryc

Latest Threads

Top