Peter Olcott said:
First of all this is flatly incorrect. The Halting
Problem does not say that a Halt Analyzer can not
ever exist. All that it says is that under certain
weird circumstances it would not produce the
correct results. I will wait and see if you can
get past that before I proceed.
Where do you dig up this endless stream of garbage
you try to pass off as "fact"?
"The Halting Problem" "says" no such thing.
It simply posts the challenge of creating a single,
well-defined Turing machine that will accept a
description of another Turing machine, and a
description of that other Turing machine's input
data, for _every_ possible Turing machine and _every
possible_ set of input data, and then _always_
correctly decides "yes, this case of Turing machine
and input data will halt" or "no, this case of
Turing machine and input data will not halt",
without itself going into an endless loop before
producing one or the other of those two results.
Nowhere in there do we read about "weird cases";
the requirement is that the Machine that Solves the
Halting Problem work for _every_ case, no exceptions
allowed. Specifically this includes cases in which
it is given itself as a subset of a Turing machine
description, and that embedding of itself as its own
input data.
Here is an exposition which defines all the needed
terms, in a way requiring only junior high school
algebra to comprehend, and defines the Halting
Problem using those terms. Any self-described
"genius" and "professional programmer" should be
able to eat this stuff like candy.
You, I'm convinced, will choke on it, but go read it
anyway, it will reduce your idiot-quotient. If it
does result in your demise, you sure won't be missed
by the flocks of your supporters ("flock, flock, has
anybody seen Peter's flock?") here.
Come back when, and only when, you can write without
writing consistent utter nonsense.
http://www.csc.liv.ac.uk/~ped/teachadmin/algor/comput.html
xanthian.